
Gridcoin Oracles:
The Gridcoin Statistics Scraping and

Reporting System (“Scraper”)

James C. Owens

Executive Summary
The prior .NET Visual Basic based distributed computing statistics gathering system, referred to
as the Gridcoin “Neural Network,” was not really a neural network. It was actually a rules based
system for gathering 3rd party distributed computing statistics (currently from BOINC projects)
off blockchain, summarizing and normalizing them, and then providing a mechanism for the
nodes in the network to agree on the statistics and put them on the blockchain in summarized
form once a day. (This is referred to as a superblock.) The research rewards are then calculated
and generated for/by staking wallets that perform research via the distributed computing
platform BOINC, confirmed by other nodes in accordance with blockchain protocols (referred to
as Proof-of-Research).

This previous system had a number of serious defects and had been in need of replacement for
some time. In October 2018 the author began a project which originally had the goal of fully
implementing Paul Jensen’s prototype statistics proxy program (“scraper”). (See
https://github.com/gridcoin-community/ScraperProxy). As this project progressed, it became
apparent that this was more properly scoped as a complete rewrite of the old “Neural Network”
subsystem, and should be written entirely in C++ as part of the core wallet. The scraper has
been developed on the integrated_scraper branch in the author’s Github repository fork of
Gridcoin and was merged into the development branch of the official Gridcoin repository on
February 25, 2019. (See https://github.com/jamescowens/Gridcoin-Research and
https://github.com/gridcoin-community/Gridcoin-Research/commit/989665d699fb9753cd2d519c
39ed347d4298652f). It was put into production (mainnet) in the Denise milestone leisure
release on May 10, 2019. (See
https://github.com/gridcoin-community/Gridcoin-Research/commit/01c88b04dbd44611efc241a4
51a04206448267f4.)

The new Scraper consists of three major parts:

https://github.com/gridcoin-community/ScraperProxy
https://github.com/jamescowens/Gridcoin-Research
https://github.com/gridcoin-community/Gridcoin-Research/commit/989665d699fb9753cd2d519c39ed347d4298652f
https://github.com/gridcoin-community/Gridcoin-Research/commit/989665d699fb9753cd2d519c39ed347d4298652f
https://github.com/gridcoin-community/Gridcoin-Research/commit/01c88b04dbd44611efc241a451a04206448267f4
https://github.com/gridcoin-community/Gridcoin-Research/commit/01c88b04dbd44611efc241a451a04206448267f4

1. The actual scraper handles the downloading of stats files from the BOINC projects, and
the filtering, compression, and publishing (with hashes and signatures) of the stats files
to the network. This was designed and written by Jim Owens (“Scraper”)

2. The scraper networking code uses the wallet messaging system in an elegant fashion to
automatically distribute the compressed, hashed, and signed stats files to all of the
nodes. The author is grateful to Tomas Brada (tomasbrod) for writing a very elegant
approach for this part. (“Scraper Net”)

3. The interface to the "neural network", which interfaces the core wallet to the scraper and
together with the existing functions in the core wallet, provides the core “neural network”
functionality. The author is grateful to Marco Nilsson (ravon) for this contribution. (“NN”).
[Note: In the Fern release, this “shim” was replaced with native interfacing to the
beacon registry, researcher class, superblock, and accrual system.]

Old vs. New Scraper Comparison
Category Old VB .NET New Native C++

Scalability Severely limited. No support
for removal of team
requirement.

High - At least 20x current
capacity - while maintaining
constant low load on BOINC
statistics sites. Fully supports
the removal of the team
requirement, which is
scheduled for the Elizabeth
Milestone (4.1.0.0).

Cross Platform Compatibility Windows only - Requires
GUI.

Completely cross platform -
supports all platforms the
wallet supports - currently
Win64, Win32, Linux (Intel 64
and 32 bit, ARM 64 and 32
bit), and MacOS (Intel 64 bit)
and can be run daemon-only
(headless).

Reliability/Availability Low - due to single point of
failure for old scraper

High - Support for multiple
scrapers, cross-verified by
the nodes, with a
configurable (nominally 48
hour) statistics retention
period, ensures scraper
outages are transparent.

Security Poor - Single scraper model
allowed the possibility of a

Very High - Each scraper
must be authorized to publish

man in the middle attack statistics to the network. Each
scraper hashes and signs all
statistics and these hashes
and signatures are checked
and cross-verified by all
nodes. Unauthorized
scrapers’ statistics are
deleted and they are banned
from the network.

Network Bandwidth Use High - the original scraper
simply forwarded
uncompressed and unfiltered
statistics files (>300 MB for a
complete set), the same as
when the nodes downloaded
them directly

Extremely Low - the new
scrapers download the stats,
filter, and compress them,
reducing >300 MB of
statistics to 4-5 MB for a 48
hour retention period.
Statistics are shared in two
stages: the statistics directory
is “pushed”, and then the
actual statistics are “pulled”
by the nodes to get the
statistics the node does not
already have. This minimizes
network traffic. Since the
messages are signed, they
can be forwarded by
intermediate nodes, just like
other network messages,
such as transactions.

Client CPU Use High - the “Neural Net” on
each node could eat up at
least 1 CPU for up to 30
minutes for processing the
statistics.

Extremely Low - the normal
nodes process the scraper
statistics in under three
seconds for a typical Intel
CPU. This ensures the CPU
goes towards computing not
administration.

Client Disk Use High - up to 2 GB used on the
client drive. Significant disk
loading during operation

None - All scraper statistics
are compressed and stored in
memory

Client Memory Use Moderate. The .NET runtime
adds overhead to the wallet

Low - Very little additional
memory required (<50 MB).

BOINC Server Resource Use High - The old scraper
sometimes downloaded

Low - Typically five scrapers
in operation - each

statistics files over and over
that were already
downloaded. If the single
scraper was down, each
node would fall back to
downloading its own
statistics, crushing the
BOINC servers (250+ nodes
at once).

downloads statistics files for a
4 hour window before the
superblock is due, only
downloading changed
statistics. This results in a
constant, low load on the
BOINC servers only during
the 4 hour window regardless
of the size of the Gridcoin
network.

Maintainability Low - Used non-native
development and build tool
chain (Microsoft Visual Studio
.NET) that is not open source
and also does not play well
with core wallet. This
hampered development,
testing, and the release
process.

High - Written to conform to
Gridcoin’s coding standards
and 100% C++, well
commented, with a modular
design that is easily
extensible, and completely
integrated into core wallet.

The scraper code is already designed to dispense with the Gridcoin BOINC team requirement
and instead use a "consensus beacon list" derived from the appcache list of active beacons to
filter the stats by CPID. The code supports using a whitelist of teams allowed in addition to the
filtering by CPID, if required by network protocol. Due to security concerns around the beacon
advertisement and renewal, until CustomMiner’s Public-key cryptographic proof of account
ownership PR #2965 (now accepted by BOINC) is implemented by the projects, or an
equivalently strong method of verifying a BOINC account holder is implemented by the Gridcoin
wallet, the team requirement via a single entry to the team whitelist, “Gridcoin”, will remain in
effect.

Security has been designed in from the outset…

The scrapers have two levels of authorization to operate. The first level, controlled by
IsScraperAuthorized(), is whether any node can operate as a "scraper", in other words,
download the stats files themselves. That does NOT give them the ability to publish those stats
to other nodes on the network. The second level, which is the
IsScraperAuthorizedToBroadcastManifests() function, is to authorize a particular node to
actually be able to publish manifests (essentially a “directory listing” of statistics objects) to other
nodes. The second function is intended to override the first, with the first being a network wide
policy. So to be clear, if the network wide policy has IsScraperAuthorized() set to false then
ONLY nodes that have IsScraperAuthorizedToBroadcastManifests() can download stats at all. If
IsScraperAuthorized() is set to true, then you have two levels of operation allowed. Nodes can
run -scraper and download stats for themselves. They will only be able to publish manifests if for

that node IsScraperAuthorizedToBroadcastManifests() evaluates to true. This allows flexibility in
network protocol without having to do a mandatory upgrade.

The networking code will not allow the acceptance or retention of manifests from nodes that are
not authorized to publish, and will ratchet up banscore for those unauthorized nodes, quickly
extinguishing them from the network. This prevents flooding the network with malicious scraper
attacks and prevents the gaining of control of the consensus by a bad actor. Each scraper is
intended to be authorized with a specific private/public key combination, that will be injected by
signed administrative message of the scraper’s address (equivalent to the scraper’s public key)
into the appcache. Only those manifests with a public key/signature that match the approved
address will be accepted by any node. This security code operates by necessity on both the
send and receive sides of the stats (manifest) messages. Normally a node that is not authorized
will not attempt to send manifests, but we have to check on the receive side too (similar to the
connectblock/acceptblock for blocks) in case someone maliciously modifies a node to send
manifests without authorization. Nodes receiving unauthorized manifests by a malicious scraper
will automatically delete those manifests and ban the sending node.

We also have to correctly deal with the deauthorization of a previously authorized scraper by the
removal of the authorization key (address). In this case the nodes on the network will be in
possession of manifests that were previously authorized and now need to be removed. This
removal is accomplished during the housekeeping loop to automatically remove existing
manifests from scrapers that have been deauthorized.

The scraper system has been designed to operate in a trustless environment. This means the
following: a minimum of 2 independent scrapers must be up and publishing manifests for the
stats to be accepted. The scraper implements the idea of a "convergence", which is similar to
"quorum" that occurs at a later stage in the SB formation. Convergence on the stats means that
a minimum of 2 scrapers or the ceiling of 60% of the scrapers that are actively publishing
(whichever is greater), agree on the statistics. Ideally, three or more independent scrapers will
be operating and “publishing”. (Five is probably the ideal number.) The statistics are
downloaded in a loop on the scraper nodes that can be set for a specific start time before the
need of a SB (nominally 4 hours before a SB is due), and will run continuously in a loop with a
nominal 5 min sleep between runs until a SB is formed. The scrapers check the Etags of both
team and user statistics files and do not redownload files already downloaded. Since the team
IDs corresponding to the whitelisted teams assigned by each project server do not change once
assigned, the team IDs are stored on disk to eliminate checking the team files entirely for
projects where the team IDs have already been determined. There is a sophisticated file
download and retention mechanism, with a default retention period of 48 hours. The scrapers
can use a password file which contains usernames and passwords to access sites needing
authentication for stats downloads. (This is the solution to the problem of BOINC project
statistics sites that need authentication for access, such as Einstein@home.)

Each scraper forms manifests from the downloaded set of compressed scraper files. This is a
compound object consisting of metadata, an inventory map, and pointers to an independent
parts collection, where each part is essentially a compressed stats file turned into a binary
object (BLOB). Each part, and the manifest as a whole, is hashed using the native (double)
SHA256 hashing algorithm, and the manifest is signed by the scraper using a designated key in
the wallet (authorized by the network protocol) when published to the network. The networking
code AUTOMATICALLY propagates the manifests to all nodes using the normal wallet
messaging infrastructure. The receiving nodes then deserialize the received manifest inventory,
check the signature and form of the manifest for validity and authorization, and then request the
requisite compressed part objects from the sending node. Once the receiving node receives all
compressed parts for the manifest, the integrity of the parts is verified by comparing the hash of
the part with the part hash in the signed, verified manifest. This manifest and its referred to parts
are now useable on the receiving node to form a convergence once the manifests and parts
from multiple scrapers have been received sufficient to meet the convergence rules. This
ensures absolute integrity in the delivery of the stats between the scrapers and the nodes.

The nodes overcome the need to "trust" the scrapers by the exertion of the "convergence"
requirement to be able to construct a converged set of stats using the convergence rules
mentioned earlier. This means each node will cross compare, using the native hashes, the
imprint of the stats objects from each scraper and make sure they agree before using them.
This drastically reduces the probability of there being a man in the middle problem or source
corruption problem with the scraper stats, since the intent is for each scraper in production to be
hosted by an independent host, and the probability of a simultaneous attack that would result in
the identical corruption of 3 or more authorized, independent scrapers (if there are 5 running) in
such a way to make the hashes match, and pass the signature check, is extremely unlikely.

Because each scraper publishes a series of manifests to the network which consists of
snapshots of the statistics files every time a statistics file is changed during the 4 hour window
leading up to the SB formation, and these are retained for a nominal 48 hours, there will be a
map of manifests available from each scraper with which to try to match between scrapers.
Once a node has received the appropriate manifests, and done the cross compare (which is
done from manifests across scrapers in reverse time order from latest to earliest) and
determined that a "convergence" exists, the nodes will then form a trial SB contract upon
demand by the appropriate functions in main.cpp (or the NN loop in the scraper) as appropriate.

This contract then operates essentially as the existing NN does, with the hash going in the
quorum popularity, etc. Pretty much from this point on, the operation is identical to the existing
NN, without all of the baggage.

Some advantages of the new design:
1. Since a low (single digit) number of scrapers can effectively supply the network with

statistics, solves the Gridcoin scalability problem, while drastically reducing the load on

the BOINC project servers from the current levels, with near constant low load thereafter
regardless of the scale of the Gridcoin network.

2. Entirely native C++ and cross platform. Allowing core development to use a simplified
development platform, easier, more transparent debugging, and a smaller, simpler
installation footprint. Both the scraper and normal (non-scraper NN) nodes will operate
on all targets for the gridcoin wallet. Linux (Intel, armhf, arm64), Windows, and Mac. This
includes headless operation as a daemon without a GUI, since the GUI is not necessary.

3. Once the BOINC stats XML files are downloaded, they are filtered and reduced to csv
files on the scrapers, which is far more appropriate and efficient for flat data structures
like this. The files are gz compressed and uncompressed using boostio gzip
compression filters.

4. Security is designed in from the outset, with multiple scrapers required for
cross-verification so that the scrapers do not have to be trusted entities (see the more
detailed discussion below).

5. The total data storage required in the data Scraper subdirectory for 48 hours of stats files
for mainnet is on the order of 4 to 5 MB. (This is opposed to something like 2 GB on the
existing NN VB code.)

6. The total data on-disk storage required for normal (non-scraper) nodes is zero. The
scraper code has the ability to decompress and process compressed stats objects in the
manifests directly in memory without going to disk first. The in memory requirement for
the manifests is on the order of about 1 MB per manifest. (And if the manifests have
parts in common they are not repeated, because they are referenced.) Also it is worth
noting that normal nodes use a large portion of the scraper code for neural network
operation. The scraper code itself was designed to be used in different modes by both
the scraper nodes and normal nodes.

7. The total processing time to form the complete statistics map and create a SB contract
on a normal node once a convergence is formed takes about 5 seconds for mainnet on
an average Intel box. (This reduces the CPU usage of NN enabled nodes drastically
from today.) This is for ~1900 active beacons, and ~15000 statistics elements across 23
whitelisted projects as of December 2018. This level of performance should easily
support scaling the Gridcoin network by a factor of 10 or more without any trouble, and
with NO additional load on the BOINC sites.

8. Gets rid of a lot of the old, bizarre snap to grid stuff and other oddities in the old NN
code.

9. Has the core structures in place to support conversion to a TCD based approach,
although that will require additional development.

10. Has the ability to support either no team filtering, or filtering by a team whitelist, based on
the needs of the network.

